Exam Symmetry in Physics

Date April 5, 2023
Time 8:30-10:30
Lecturer D. Boer

- Write your name and student number on every separate sheet of paper
- Raise your hand for more paper
- You are not allowed to use the lecture notes, nor other notes or books
- Use of a calculator is allowed
- All subquestions (a, b, c) of the three exercises have equal weight
- Illegible answers will be not be graded
- Good luck!

Exercise 1

Consider a pyramid with a regular square as base with corners labeled by A, B, C, D and its apex E above the center O of the square base (see figure). Its symmetry group is $C_{4 v}$.

(a) Identify all symmetry transformations that leave this pyramid invariant and divide them into conjugacy classes, using geometrical arguments.
(b) Construct the character table of $C_{4 v}$ and explain how the entries are obtained.
(c) Determine the characters of the three-dimensional vector representation of $C_{4 v}$ and use them to determine whether the symmetries of the pyramid allow for an invariant vector.

Exercise 2

Consider the group $O(3)$ of real orthogonal 3×3 matrices and its action on a rank- 2 tensor $\sigma_{i j}(i, j$ can take the values 1,2 , and 3$)$.
(a) Show that $\sigma_{i j}=\delta_{i j}$ (the Kronecker delta) is invariant under $O(3)$ transformations.
(b) Show that any $O(3)$-invariant tensor $\sigma_{i j}$ satisfies $\left[D^{V}(g), \sigma\right]=0$ for all $g \in O(3)$.
(c) Determine the subgroup of $O(3)$ transformations that leave the tensor

$$
\sigma_{i j}=\delta_{i j}+a \delta_{i 3} \delta_{j 3}
$$

invariant, for a nonzero constant a.

Exercise 3

Consider the group $S U(2)$ of unitary 2×2 matrices with determinant equal to 1 . Consider its action on the spin states $\left|s, m_{s}\right\rangle$ through the operator

$$
U(\theta, \hat{n})=\exp \left(\frac{i}{\hbar} \theta \hat{n} \cdot \vec{S}\right)
$$

where \vec{S} denotes the spin operator.
(a) Write down the explicit matrix representation $D^{\left(\frac{1}{2}\right)}$ for $U(\theta, \hat{n})$ acting on the carrier space of $s=\frac{1}{2}$ states for the specific case $\hat{n}=\hat{z}$.
(b) Explain how the result in (a) shows that states of a spin- $\frac{1}{2}$ particle pick up a minus sign after a 2π rotation and that as a consequence $D^{\left(\frac{1}{2}\right)}$ is not a representation of $S O(3)$.
(c) Write down the Clebsch-Gordan series for the direct product $D^{\left(\frac{1}{2}\right)} \otimes D^{\left(\frac{3}{2}\right)}$ and verify the decomposition by checking the dimensions of the various representations (no need to explicitly indicate the basis transformation).

